Home

news and events

HST MEMP Student James Dahlman is First Author of Nature Nanotechnology paper on Expanding the Power of RNA Interference

Monday, May 12, 2014
May 12, 2014

RNA carried by new nanoparticles can silence genes in many organs, could be deployed to treat cancer.

RNA interference (RNAi), a technique that can turn off specific genes inside living cells, holds great potential for treating many diseases caused by malfunctioning genes. However, it has been difficult for scientists to find safe and effective ways to deliver gene-blocking RNA to the correct targets.

Up to this point, researchers have gotten the best results with RNAi targeted to diseases of the liver, in part because it is a natural destination for nanoparticles. But now, in a study appearing in the May 11 issue of Nature Nanotechnology, an MIT-led team reports achieving the most potent RNAi gene silencing to date in nonliver tissues.

Using nanoparticles designed and screened for endothelial delivery of short strands of RNA called siRNA, the researchers were able to target RNAi to endothelial cells, which form the linings of most organs. This raises the possibility of using RNAi to treat many types of disease, including cancer and cardiovascular disease, the researchers say.

“There’s been a growing amount of excitement about delivery to the liver in particular, but in order to achieve the broad potential of RNAi therapeutics, it’s important that we be able to reach other parts of the body as well,” says Daniel Anderson, the Samuel A. Goldblith Associate Professor of Chemical Engineering, a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science, and one of the paper’s senior authors.

The paper’s other senior author is Robert Langer, the David H. Koch Institute Professor at MIT and a member of the Koch Institute. Lead authors are MIT graduate student James Dahlman and Carmen Barnes of Alnylam Pharmaceuticals.

Read more...

MIT engineers designed RNA-carrying nanoparticles (red) that can be taken up by endothelial cells (stained blue).

Image courtesy of Aude Thiriot/Harvard