HST’s MEMP PhD Program

Is this program a good fit for me?

HST’s Medical Engineering and Medical Physics (MEMP) PhD program offers a unique curriculum for engineers and scientists who want to impact patient care by developing innovations to prevent, diagnose, and treat disease. We're committed to welcoming applicants from a wide range of communities, backgrounds, and experiences.

How is HST’s MEMP PhD program different from other PhD programs?

As a MEMP student, you’ll choose one of 11 technical concentrations and design an individualized curriculum to ground yourself in the foundations of that discipline. You’ll study medical sciences alongside MD students and become fluent in the language and culture of medicine through structured clinical experiences. You’ll select a research project from among laboratories at MIT, Harvard, affiliated hospitals and research institutes, then tackle important questions through the multiple lenses of your technical discipline and your medical training. As a result, you will learn how to ask better questions, identify promising research areas, and translate research findings into real-world medical practice.

What degree will I earn?

You’ll earn a PhD awarded by MIT or by the Harvard Faculty of Arts and Sciences.

What can I do with this degree?

Lead pioneering efforts that translate technical work into innovations that improve human health and shape the future of medicine.

How long will it take me to earn a PhD in HST’s MEMP program?

Similar to other PhD programs in MIT's School of Engineering, the average time-to-degree for MEMP PhD students is less than six years.

What are the degree requirements?

Science / Engineering

Concentration Areas

Choose one of the established concentration areas and select four courses from the approved list for the chosen area. Current MEMP concentration areas are:

  • Aeronautics & Astronautics
  • Biological Engineering
  • Brain & Cognitive Sciences
  • Chemical Engineering
  • Computer Science
  • Chemistry
  • Electrical Engineering
  • Materials Science & Engineering
  • Mechanical Engineering
  • Nuclear Engineering
  • Physics

Harvard MEMPs fulfill Basic Science/Engineering Concentration and Qualifying Exam through their collaborating department (SEAS or Biophysics).

Biomedical Sciences and Clinical Requirements

Biomedical Sciences Core

  • HST030 or HST034: Human Pathology
  • HST160: Genetics in Modern Medicine
  • HST090: Cardiovascular Pathophysiology

Restricted Electives - two full courses required*

  • HST010: Human Anatomy
  • HST020: Musculoskeletal Pathophysiology*
  • HST100: Respiratory Pathophysiology**
  • HST110: Renal Pathophysiology**
  • HST130: Introduction to Neuroscience
  • HST162: Molecular Diagnostics and Bioinformatics*
  •  HST164: Principles of Biomedical Imaging*
  • HST175: Cellular & Molecular Immunology

*  May combine two half-courses to count as one full course
**Must choose at least one of HST100, HST110

Clinical Core

  • HST201: Intro. to Clinical Medicine I and HST202: Intro. to Clinical Medicine II

OR

  • HST207: Intro. to Clinical Medicine

 

PhD Thesis Guide

Letter of Intent #1:

Research advisor and topic.
Due by April 30 of 2nd year.

Letter of Intent #2:

Tentative thesis committee.
Due by April 30 of 3rd year.

Thesis proposal:

Defended before thesis committee.
Due by April 30 of 4th year.

Final Thesis:

Public defense and submission of final thesis document.

Harvard MEMPs must an electronic copy of the final thesis including the signed cover sheet. Harvard MEMPs should not register for HST.ThG.

Qualifying Exam

TQE: Technical qualification based on performance in four concentration area courses and Pathology

OQE: Oral examination to evaluate ability to integrate information from diverse sources into a coherent research proposal and to defend that proposal

Harvard MEMPs fulfill Basic Science/Engineering Concentration and Qualifying Exam through their collaborating department (SEAS or Biophysics).

Professional Skills

HST500: Frontiers in (Bio)Medical Engineering and Physics

Required spring of first year

HST590: Biomedical Engineering Seminar

Required fall semester of first year. Minimum of four semesters required; one on responsible conduct of research and three electives. Topics rotate.

Required for all MEMP students. (Biophysics students may substitute MedSci 300 for HST590 term on responsible conduct of research.)

Professional Perspectives 

Required once during PhD enrollment 

PDF 10.25.2023

What can I expect?

You’ll begin by choosing a concentration in a classical discipline of engineering or physical science. During your first two years in HST, you’ll complete a series of courses to learn the fundamentals of your chosen area.

In parallel, you’ll become conversant in the biomedical sciences through preclinical coursework in pathology and pathophysiology, learning side-by-side with HST MD students.

With that foundation, you’ll engage in truly immersive clinical experiences, gaining a hands-on understanding of clinical care, medical decision-making, and the role of technology in medical practice. These experiences will help you become fluent in the language and culture of medicine and gain a first-hand understanding of the opportunities for — and constraints on — applying scientific and technological innovations in health care.

You’ll also take part in two seminar classes that help you to integrate science and engineering with medicine, while developing your professional skills. Then you’ll design an individualized professional perspectives experience that allows you to explore career paths in an area of your choice:  academia, medicine, industry, entrepreneurship, or the public sector.

A two-stage qualifying examination tests your proficiency in your concentration area, your skill at integrating information from diverse sources into a coherent research proposal, and your ability to defend that research proposal in an oral presentation.

Finally, as the culmination of your training, you’ll investigate an important problem at the intersection of science, technology, and medicine through an individualized thesis research project, with opportunities to be mentored by faculty in laboratories at MIT, Harvard, and affiliated teaching hospitals.